Acta Cryst. (1996). C52, 1530-1532

New Routes to Pyranotetrahydrofuran Derivatives

SANDRA IANELLI,^{a} Mario Nardelli, $a*$ Daniele BELLETTI,^{*a*} BRIGITTE JAMART-GRÉGOIRE,^{*b*} SOPHIE MERCIER-GIRARDOT^{b} AND PAUL CAUBERE^{b}

.aDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitdt degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale deIle Scienze 78, 1-43100 Parma, Italy, and bLaboratoire de Chimie Organique L UA CNRS No. 457, Universit~ de Nancy I, BP 239, 54506 Vandoeuvre-Les-Nancy C~dex, France. E-maih nardelli@ipruniv.cce.unipr.it

(Received 17 May 1995; accepted 18 October 1995)

Abstract

The determination of the structure of *(4aRS,4bSR,- 6RS, 8aRS,* 9aSR)-6-methyl-3,4,4a, 4b, 5,6,7,8,8a, 9adecahydro-2H-benzofuro $[2,3-b]$ pyran, C₁₂H₂₀O₂, has allowed us to interpret the stereochemistry of the elimination-addition process by which the compound is obtained from the reaction of 3-bromodihydropyran with ketone enolate and sodium amide. The conformation of the molecule in the solid state is discussed and compared with the conformation calculated by molecularmechanics optimization.

Comment

We showed previously (Jamart-Grégoire, Grand, Ianelli, Nardelli & Caubère, 1990; Jamart-Grégoire, Mercier-Girardot, Ianelli, Nardelli & Caubère, 1995) that dihydropyranyl ketones, (1), could be obtained easily by elimination-addition from 3-bromodihydropyran, ketone enolates and sodium amide. Ketones of type (1) are convenient starting materials for the synthesis of pyranotetrahydrofurans of type (3).

During the course of this study, we had to consider the determination of the structure of (3) ($n = 2$, $R = Me$). Although the nature of the ring junctions could easily be determined from H NMR data, the position of the methyl substituent could not. Fortunately, we were able to obtain crystals suitable for an X-ray crystal structure analysis, from which the stereochemistry of the reactions could be deduced (see scheme below). The alcohol (2) is formed by the axial attack of a proton upon compound (1), with formation of the equatorial hydroxy group which was then protonated on the back side of the dihydropyran ring, giving a cationic species stabilized by the O atom on the front side, which was the only side accessible to the hydroxy group.

Table 3 gives the relevant parameters describing the conformation of the three rings forming the core of the molecule. The configuration at the $C4-C5$ iunction is *cisoid*, while that at C6–C7 is *transoid*. The configurations **at** the chiral centres, with reference to the labelling of Fig. 1, are C4R, C5S, C6R, C7S and C9R. The other enantiomer is also present in the crystal, as a consequence of the centrosymmetric space group.

The molecular conformation can be deduced from the torsion angles given in Table 2. The C3--C4 bond is $(-)$ synclinal to O2—C5 and $(+)$ synclinal to $C7-C8$, while $C5-O2$ is $(-)$ anticlinal to $C6-C11$ $[O2-C5\cdots C6-C11-121.0(2)^{\circ}]$ and C9--C12 is (+)antiperiplanar to C7--C8.

To estimate the influence of packing forces on the molecular conformation, molecular-mechanics calculations were carried out using both *MMX and MM+* force fields of the *PCMODEL* (Serena Software, 1989) *and HYPERCHEM* (Autodesk Inc., 1992) suites of programs, respectively. In these calculations, isolated molecules were considered and program default parameters were used, beginning the energy minimization process from the molecular structures found experimentally in the X-ray diffraction analysis. (No allowance was made for non-bonded interactions in the crystal as none was conspicuously significant and any interactions involving charge polarization could only be described if the experimental electric potential distribution in the crystal was available, which is beyond the scope of the present analysis.) The results in terms of bond distances, bond angles and torsion angles are compared with those obtained from the experimental analysis in Table 2. From this comparison, the following general comments can be made. Firstly, a rough general evaluation of the disagreement between the experimental and calculated models is given by the following averages of the absolute values of the differences $|\Delta|$: $|\Delta|_{MMX}$ distances 0.015 Å, angles 1.3, torsions 3.2°; $\Delta|_{MM+}$ 0.016 Å, 1.3, 3.5°. Second, all the bond-distance values observed, except those involving the O atoms, are less than those calculated and this can perhaps be justified by the fact that the experimental values have not been corrected for the effects of thermal motion. Third, the largest difference in bond angles is observed for the $O1 - C5 - O2$ angle, whose value is intermediate between those calculated by the two force fields, indicating that some default parameter used in these calculations was probably not strictly appropriate. Finally, the torsion angles show the largest discrepancies when the O atom of the furan ring is involved, indicating significant differences in the conformation of that ring, possibly due to packing effects; in this respect the comparison of puckering parameters of Table 3 is irrelevant.

Analysis of the thermal motion of the molecule in the crystal, carried out in terms of the Schomaker & Trueblood (1968) TLS rigid-body approximation using the *THMV* program (Trueblood, 1984), shows that there is no case of possible disorder, giving quite satisfactory agreements between the observed and calculated atomic displacement parameters. The overall residual disagreement index *Rwu* is only 0.058, in agreement with the low anisotropy of the atomic displacements, the $r_{\text{max}}/r_{\text{min}}$ ratio of the maximum and minimum r.m.s. displacements being in the range 1.34-2.15 with an average value of 1.77.

Fig. 1. *ORTEP* (Johnson, 1965) drawing of molecule (3). Ellipsoids are drawn at the 50% probability level.

Experimental

Compound (3) $(R = Me, n = 2)$ was obtained by the action of two equivalents of NaBH4 in EtOH at room temperature on 5-(5-methyl-2-oxocyclohexyl)-3,4-dihydropyran (prepared according to Jamart-Grégoire, Mercier-Girardot, Ianelli, Nardelli $& \text{Caubère}, 1995),$ followed by cyclization with 0.1 equivalents of p-toluenesulfonic acid in $CH₂Cl₂$ for 2 h at room temperature.

Crystal data

Data collection

Siemens AED diffractometer θ /2 θ scans Absorption correction: none 3953 measured reflections 2084 independent reflections 1917 observed reflections $[I > 2\sigma(I)]$ $R_{\text{int}} = 0.0260$

Refinement

Refinement on F^2	$\Delta \rho_{\text{max}} = 0.13$ e \AA^{-3}
$R(F) = 0.0540$	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.1064$	Extinction correction:
$S = 1.227$	SHELXL93 (Sheldrick,
2084 reflections	1993)
208 parameters	Extinction coefficient:
All H-atom parameters	0.039(2)
refined	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.0377P)^2]$	from International Tables
$+ 0.174P$	for Crystallography (1992,
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} < 0.001$	6.1.1.4)

Table 1. *Fractional atomic coordinates and equivalent isotropic displacement parameters* (A^2)

$U_{\text{eq}} = (1/3)\sum_i \sum_j U_{ij} a_i^* a_i^* a_i^* a_j^*.$				
х	y	z	U_{ea}	
0.16204(8)	0.1966(2)	0.2758(1)	0.0560(4)	
0.06674(9)	0.2293(3)	0.1041(1)	0.0660(5)	
$-0.0178(1)$	0.2962(4)	0.1332(2)	0.0644(7)	
$-0.0769(1)$	0.1010(4)	0.1441(2)	0.0613(7)	
$-0.0303(1)$	$-0.0462(4)$	0.2367(2)	0.0526(6)	
0.0655(1)	$-0.1090(3)$	0.2205(1)	0.0485(5)	
0.1169(1)	0.0821(3)	0.1790(1)	0.0549(6)	
0.1568(1)	0.0645(3)	0.3713(1)	0.0463(5)	
0.1307(1)	$-0.1625(3)$	0.3275(1)	0.0452(6)	
0.1045(1)	$-0.3041(3)$	0.4189(2)	0.0533(7)	
0.1849(1)	$-0.3173(3)$	0.5154(2)	0.0562(6)	
0.2225(2)	$-0.0897(4)$	0.5524(2)	0.0647(8)	
0.2421(1)	0.0569(4)	0.4579(2)	0.0586(7)	
0.1604(2)	$-0.4467(5)$	0.6124(2)	0.0759(9)	

Table 2. *Comparison of observed and calculated bond distances (* \tilde{A} *), angles (°) and selected torsion angles (°)*

 $0.42 \times 0.39 \times 0.28$ mm

Colourless

 $\theta_{\text{max}} = 70.01^{\circ}$ $h = -18 \rightarrow 18$ $k = -2 \rightarrow 7$ $l=-14\rightarrow 14$ 1 standard reflection monitored every 50 reflections intensity decay: none

Table 3. *Conformation of the rings and dihedral angles (°) of their least-squares planes*

 Q_T = total puckering amplitude (\AA) (Cremer & Pople, 1975), DAP = minimum displacement asymmetry parameter (Nardelli, 1983 a), C = chair, $HC = \text{half-chain}, E = \text{envelope}, MMX = \text{force field of } \text{PCMODEL}$ *and MM+* = force field of *HYPERCHEM.*

The integrated intensities were obtained by a modified version (Belletti, Ugozzoli, Cantoni & Pasquinelli, 1979) of the Lehmann & Larsen (1974) peak-profile analysis procedure and corrected for Lorentz and polarization effects, but not for absorption. The structure was solved by direct methods and refined by anisotropic full-matrix least squares. All the H atoms were found from a $\Delta \rho$ map and refined isotropically.

Data collection: local programs. Cell refinement: *LQPARM* **(Nardelli & Mangia, 1984). Data reduction: local programs. Program(s) used to solve structure:** *SHELXS86* **(Sheldrick, 1990). Program(s) used to refine structure:** *SHELXL93* **(Sheldrick, 1993). Molecular graphics:** *ORTEP* **(Johnson, 1965). Software used to prepare material for publication:** *PARST* **(Nardelli, 1983b) and** *PARSTCIF* **(Nardelli, 1991).**

Financial support from the European Community Commission under contract NSC1000657 is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry and atomic coordinates corrected for libration have been deposited with the IUCr (Reference: BM1023). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Autodesk Inc. (1992). *HYPERCHEM.* Version 2.0. Autodesk Inc., 2320 Marinship Way, Sansalito, CA 94965, USA.
- Belletti, D., Ugozzoli, F., Cantoni, **A. & Pasquinelli, G.** (1979). *Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema General Automation Jumbo 220.* Internal Reports 1-3/79. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
- Cremer, D. & Pople, J. A. (1975). *J. Am. Chem. Soc.* 97, 1354-1358.
- Jamart-Grégoire, B., Grand, V., Ianelli, S., Nardelli, M. & Caubère, P. (1990). *Tetrahedron Lett.* 52, 7603-7606.
- Jamart-Grégoire, B., Mercier-Girardot, S., Ianelli, S., Nardelli, M. & Caub~re, P. (1995). *Tetrahedron,* 51, 1973-1984.
- Johnson, C. K. (1965). *ORTEP.* Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Lehmann, M. S. & Larsen, F. K. (1974). *Acta Cryst.* A30, 580-589.
- Nardelli, M. (1983a). *Acta Cryst.* C39, 1141-1142.
- Nardelli, M. (1983b). *Comput. Chem. 7,* 95-98.
- Nardelli, M. (1991). *PARSTCIF. Program for Creating a CIF from the Output of PARST.* University of Parma, Italy.
- Nardelli, M. & Mangia, A. (1984). *Ann. Chim. (Rome),* 74, 163-174.
- Schomaker, V. & Trueblood, K. N. (1968). *Acta Crvst. B24,* 63-76.
- Serena Software (1989). *PCMODEL.* Version 4.0. Serena Software, Bloomington, IN 47402-3076, USA.
- Sheldrick, G. M. (1990). *Acta Cryst.* A46, 467-473.
- Sheldrick, G. M. (1993). *SHELXL93. Program for the Refinement of Crystal Structures.* University of G6ttingen, Germany.
- Trueblood, K. N. (1984). *THMV. Program for Thermal Motion Analysis.* University of California, Los Angeles, USA.